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The limits of Poisson's ratio in polycrystalline 
bodies 

P. S. T H E O C A R I S  
National Academy of Athens, P.P. Box 77230, 175 10 Athens, Greece 

While it has been established that the elastic moduli and compliances of anisotropic and isotropic 
materials should be positive for thermodynamic reasons, no condition related to the values of 
Poisson's ratio has yet been established. However, it is generally accepted that for isotropic 
materials Poisson's ratio should vary between - 1.0 and 015, whereas for orthotropic materials 
various conditions have been introduced relating the different components of the anisotropic 
Poisson's ratio with the remaining elastic constants of the material. In this paper, limits for 
Poisson's ratio of body-centred cubic (bcc) polycrystalline materials are determined, based on the 
modes of deformation of a typical unit cell of the material subjected to a uniform external loading 
arbitrarily oriented relative to the principal axes of the crystal. It is shown that the values of 
Poisson's ratio thus established correlate satisfactorily with experimental values of this constant. 
The procedure can be readily applied to other structural units of polycrystalline bodies. 

1. In t roduct ion 
It has been shown that the spectral decomposition of 
the compliance fourth-rank tensor, S, of a solid, which 
defines its eigenvalues, expresses necessary and suffi- 
cient conditions assuring positive values for the func- 
tion of the elastic potential. It has been proved that the 
elastic potential takes positive values, if and only if all 
the eigenvalues of the tensor S are positive [1-4]. The 
condition of positiveness of the elastic potential func- 
tion for the transversely isotropic material implies the 
positiveness of all eigentensors of the fourth-order 
compliance tensor of the material $, which, in turn, 
yields the following inequalities I-5, 6, 7]. 

For transversely isotropic bodies it has been shown 
that the longitudinal VL, and the transverse, vT, Pois- 
son's ratios should satisfy the following relationships 

IvTI < 1 (1) 

2v 2 E L 
< - -  (2) 

( 1  - vT) ET 

where EL, Ve and ET, vv are the longitudinal and 
transverse elastic moduli and Poisson's ratios of the 
material I-8]. Thus, while the positiveness for all the 
elastic moduli (EL and ET) and the respective shear 
moduli (GL and GT) is valid, because of thermodyn- 
amic reasons, Poisson's ratios do not satisfy such 
a simple condition. 

For isotropic materials, where it is valid that vL 
VT = V and EL = ET = E, Equation 2 yields 

- 1 . 0  __< v < 0.5 (3) 

For these materials the well-known relationships be- 
tween their shear G, and bulk, K, moduli and the 
elastic modulus, E, and Poisson's ratio, v, hold [-9] 

E E 
G - K = 

2(1 + v)' 3(1 - 2v) 
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Similar expressions for the limits of the values of 
Poisson's ratios were established previously [5, 6] by 
equivalent procedures, different than the straight- 
forward analysis based on spectral decomposition of 
the compliance tensor, $, where again the condition 
that all elastic moduli are positive was used. 

However, all materials used in engineering applica- 
tions present positive values for their Poisson's ratios. 
Only some foamy materials and some materials of 
very high porosity present either very low or negative 
values for Poisson's ratio [10]. But such materials are 
as yet of very limited interest in engineering applica- 
tions and therefore we shall dispense with them. Then, 
Equations 1-3 impose the real limits of variation of 
Poisson's ratios between zero and 0.5 for isotropic 
bodies and between zero and unity for the transverse 
Poisson's ratio of the orthotropic materials; whereas 
for the respective longitudinal Poisson's ratio, VL, In- 
equality 2 is valid. 

TABLE I The values of Poisson's ratio of various substances 
belonging to different lattice systems 

BCC FCC HCP Diamond Sodium 
chloride" 

K, 0.446 Cu, 0.35 Mg, 0.33 Diamond, 0.298 NaCl, 0.207 
Na, 0.433 Ni; 0.31 Zn, 0.35 Si, 0.278 BaC1, 0.283 
W, 0.283 A1, 0.34 Cd, 0.29 Ge, 0.271 KC1, 0.134 
V, 0.360 Pb, 0.45 Co, 0.31 KBr, 0.142 
Nb, 0.380 Au, 0.42 Zr, 0.34 KI, 0.137 
Fe, 0.3"73 b Ag, 0.38 Ti, 0.34 LiF, 0.312 
Cr, 0.382 Pt, 0.39 

Fe, 0.28 ~ 

aSodium chloride ionic solid structures are formed by two inter- 
twined fcc structures for each element. 
bLow-temperature value. 
tHigh-temperature value. 
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However, Table I extracted from [10] indicates 
the following facts. (i) The majority of the values for 
Poisson's ratio lie between v = 0.30 and v = 0.38. (ii) 
There is a rather distinct separation of these values for 
the unit cells of different space lattices. Thus, the 
body-centred cubic (bcc) and face-centred cubic (fcc) 
systems have Poisson's ratios in the same approximate 
range, whereas the hexagonal close packed (hcp) sys- 
tem elements have rather lower values of Poisson's 
ratio. Furthermore, the diamond system possesses sig- 
nificantly lower values, whereas sodium-chloride sys- 
tems, where the crystal is formed by two intertwined 
fcc systems and is therefore more compactly arranged, 
have much lower values of Poisson's ratios. These 
remarks suggest that the values of Poisson's ratios for 
different materials are highly dependent on the type of 
structure of the cells. 

Finally, it is worthwhile remarking that to ensure 
the positiveness of the elastic potential function both 
of Inequalities 1 and 2 should be simultaneously satis- 
fied. Neglecting to satisfy one of these inequalities may 
lead to erroneous values for Poisson's ratio. As an 
example, a very high value for Poisson's ratio has been 
given for orthotropic plates of a boron-epoxy com- 
posite, a value of Poisson's ratio of VL = 1.97 was 
given, and this was considered to be acceptable. This 
was because only one of Inequalities 1 and 2 was 
satisfied for defining this value of Poisson's ratio [7]. 

In this paper a study was undertaken to explain the 
values and the limits of Poisson's ratios of the two 
more common structures in the metallic crystals, that 
is the bcc and the fcc cubic systems, as well for hcp 
systems. Simple analyses of these most common ar- 
rangements, along all possible paths of load transmis- 
sion of their unit cells, explain the phenomenon in 
which the values of Poisson's ratios are concentrated 
in more restricted limits than those indicated by the 
conditions implied by thermodynamic principles. 

2. The limits of Poisson's ratio 
for or thotropic  bodies 

For a general anisotropic elastic body the requirement 
implied by thermodynamics is that its elastic poten- 
tial, @, must be positive. This elastic potential is ex- 
pressed by 

@ = �89 o = �89 (4) 

where o and ~ express the stress and strain tensors and 
$ and C are the compliance and stiffness symmetric 
fourth-order tensors, respectively, which should be 
always positive and definite. 

For a transversely isotropic body, which is of inter- 
est in applications, the following expressions give the 
four roots of the minimum polynomial for $, which 
constitute the respective eigenvalues given by [1-4] 

(1 + vT) 1 
)~ - = ( S a )  

ET 2GT 

1 
)~2 - (5b) 

2GL 

_ _ , , ] 2  
~3 (1 VT) ~- @ 

2ET 2EL 
2V~'('/2 

~4 (1 -- VT) "-~ __ 

2ET ~ t L  ~ T  2/7L l 

2VtZ  '/2 

(5c) 

(5d) 

The indices L and T denote the longitudinal and the 
transverse directions respectively. 

From Equation 5a-d  apart from the obvious posit- 
iveness of ET(L) and GT(L), the Poisson's ratios have 

1 > IVT]  ( 6 )  

EL 2v~ 
- -  > ( 7 )  
E T (l -- V-r) 

Equations 6 and 7 were previously established by 
Eubanks and Sternberg [5] from expressions of the 
strain-energy density in terms of the components of 
the stiffness tensor, C, and the strain, a, where the 
C tensor should satisfy conditions of positiveness. 

It is worthwhile indicating that Equation 6 and 
7 were established by a straightforward solution of 
Equation 5 derived by a rational analysis of a spectral 
decomposition of the compliance tensor, $. Further- 
more, similar relationships for a general orthotropic 
material were established by Jones [-7] by using 
a series of conditions relating the diagonal and the 
off-diagonal components of the $ and C tensors and 
their interrelations with the elastic anisotropic moduli 
and Poisson's ratios of the body. 

These relationships under the condition of positive 
elastic potential yield the respective relationships. 

Iv121 < \E22// (8) 

( ~ 1 , )  2 
Iv13J < \~3a3/ (9) 

< Iv~l k ~ )  

and 

E33 2 E22 
2V12 V23 V13 ~11 < 1 -- V12E11- 

�9 2 E33 v h / ~  - VE3E22 ~ < 1 (11) 

where Ell ,  E22  and E33 are the elastic moduli for the 
strongest medium and weakest direction of anisotropy 
and v~j (i,j = 1, 2, 3) are the respective values for the 
anisotropic Poisson's ratios. 

It can be readily shown that for the transversely 
isotropic body, where EI~ = E L and E22  = E33 = E T 

and v23 = VT, V12 = Vt3 = VL, Inequalities 8-11 turn 
into Inequalities 6 and 7. 

It is worthwhile mentioning that all of Inequalities 
8-11 must be satisfied simultaneously in order to 
assure the positiveness of the elastic potential function 
of the material. 
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On the other hand, Christensen [11] developed 
another group of such relationships by bounding the 
values of Poisson's ratios through a procedure of 
maximization of the other elastic constants of the 
material. The bounding values for the transverse elas- 
tic modulus and Poisson's ratio for bounding the 
longitudinal Poisson's ratio are expressed by 

4 G T K T  
E T = 

KT-q-  G T -I- 4 V 2 G T ( K T / E L )  

and (12) 

K T --  G T --  4 V 2 G T ( K T / E L )  
V T 

K~ + C~ + 4v~C,(KT/EL) 

where KT is the plane-strain bulk modulus of the 
material and Gx is the shear modulus along the trans- 
versely isotropic plane of the body. Indeed, Inequality 
8 was derived by putting the value KT = oO for the 
plane-strain bulk modulus, KT, and Gx = oo for the 
shear modulus. 

Then, a rational mathematical formalization was 
used by Christensen in order to define valid intervals 
for the cr of Poissons ratio. This is a rela- 
tively simple procedure and it leads to reasonable 
results, however, establish rather broad bounds and 
thus restrict their effective use for defining the correct 
mechanical behaviour of anisotropic materials. 

3. Crystal arrangements for defining 
closer bounds of Poisson's ratio 

The ratio of the transverse strain (contraction or ex- 
tension) to a longitudinal strain (extension or contrac- 
tion) which is observed in a tension or compression 
test was the first attempt to theoretically derive the 
so-called Poisson's ratio in 1829 by Poisson [12]. This 
derivation was based on the general equations of equi- 
librium obtained by a system of particles between 
which molecular forces of attraction act. For an iso- 
tropic body, a value for Poisson's ratio equal to 
v = 0.25 was found, and this value was accepted as 
a universal constant. Since this constant value differed 
considerably from any value experimentally estab- 
lished, it was accepted that the value of Poisson's ratio 
is not a universal constant, and must be regarded as 
a particular property of each material. Nevertheless, 
extensive experimental evidence has also firmly estab- 
lished that, for the majority of structural materials, 
Poisson's ratios vary normally between v = 0.33 and 
v = 0.40, thus falling inside a limited bound, which 
may be established as a zone of almost equal values of 
this material constant. 

Furthermore, measurements of the mechanical 
properties in single crystals revealed the fact that their 
properties vary with the direction of loading. Since 
a polycrystalline body presents a great variety of dif- 
ferently oriented crystals, it is reasonable to accept 
that the overall macroscopic strain of the isotropic 
body depends on the statistical contribution of the 
particular deformations of each and every crystal in 
the body, thus making the contribution from the ori- 
entation of loading and its distribution inside the 

body a significant factor. Then, an accurate evaluation 
of Poisson's ratio values necessitates consideration of 
this influence. We shall subsequently consider the de- 
formation distribution inside a crystalline unit corres- 
ponding to one of the commonly found crystalline 
arrangements, that is the bcc and fcc systems as well 
as the hcp system. 

Furthermore, atomic arrangements can be found in 
a number of crystalline bodies, where the atoms are 
packed as tightly as possible, occupying 74% of the 
available space. Each atom in these arrangements is 
a part of a layer of atoms and two successive layers are 
combined, so that the atoms of one layer rest on the 
depressions between atoms of the neighbouring layer. 
A third successive layer can be added, giving either the 
fcc or bcc structure. 

The first layer of atoms is visualized as being on 
a flat surface (layer A), each atom touching its nearest 
neighbours. The next layer of atoms (layer B) is placed 
with each atom nestled into the depressions between 
the atoms of layer A. The third successive layer also 
occupies the depressions of the atoms of layer B. 
However, there are two available positions, either 
directly over the atoms of layer A, or displaced dia- 
gonally to the next empty depressions of layer B (layer 
C). Thus, the sequence ABABAB... of layers pro- 
duces the hcp system, whereas the sequence AB- 
CABC.. .  produces the fcc structure. Both structures 
correspond to the densest possible packing of spheres. 
Each atom in both packing systems is surrounded by 
12 identical atoms; six in the same layer, three above 
and three below. Spaces among the atoms are sur- 
rounded by either four atoms (tetrahedral voids) or by 
six atoms (octahedral voids). 
Thus, the derivation of Poisson's ratio will be under- 
taken under the following assumptions 

1. A linear stress-strain relationship will be postu- 
lated between the atoms having closest spacings. 

2. The two most important practical crystal struc- 
tures will be studied. These are the hcp and the fcc 
systems. 

3. The extreme directions of loading relative to the 
orientation of the crystal-lattice axes will be con- 
sidered. 

4. A single structural element will be isolated and 
analysed as a space framework to derive deflections 
from the externally applied loads. 

5. Poisson's ratio will be computed for a single 
element, whereas the effect of the orientation of load- 
ing will be evaluated statistically for the whole of 
a polycrystalline body. 

6. The actual crystal will be assumed to be com- 
posed of many elements. 

7. The applications of the results for single crystals 
will be incorporated into a general theory of polycrys- 
talline bodies. 

The bcc lattice, applying to only a few metals of 
practical interest, will not be considered in detail in 
this study, although the particular analyses encoun- 
tered for the two other systems may be used for 
evaluating Poisson's ratio for such materials. 
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Figure 1 The fcc crystal lattice. 
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presenting the atoms at the corners of the lattice. We 
shall then proceed to examine an actual pyramid of 
spheres in the two systems, by loading in a direction 
normal to the planes of the arrays of spheres and 
applying a vertical force to these pyramidal piles of 
spheres, which can be transmitted through the con- 
straints of the framework. Thus, Fig. 3 represents 
a typical projection for the fcc system on the diagonal 
(ADGFA)-plane of the unit pyramid (AILMKNJG) 
containing two opposite tetrahedra AILM and GJKL, 
connected by two square pyramids KLMJN and 
ILMJN. The external force P = 1 is applied along the 
diagonal AG of the unit cube. 

Projections of all the unit-spheres lying outside the 
diagonal plane ADGF on this plane yield the plane 
frame shown in Fig. 4b; Fig. 4a shows the projection 
of this frame unit, on any plane, of the layers of 
close-packed atoms. 

While Fig. 4 corresponds exclusively to the fcc sys- 
tem, Fig. 5 shows the respective frame unit for the hcp 
system, which is much simpler than the corresponding 
frame unit for the fcc system in Fig. 4. Again, Fig. 5al 
shows the projection of this frame on the plane of 
close-packed spheres, whereas Fig. 5a2 shows the pro- 
jection along the respective diagonal plane normal to 
the previous one. 

Further examination of both piles for the bcc and 
the hcp crystal lattices indicates that in either system 
there are complementary structural elements consist- 
ing of two square pyramids joined at their bases, as 
indicated in Fig. 5b. Fig. 5bl shows the projections 
on both pyramids on their common base, whereas 
Fig. 5b2 shows the projection on the diagonal plane. 

Furthermore, it can also be seen that in both crystal 
lattices there are straight rows of atoms in several 
planes, which are capable of transmitting axial forces 
(see Fig. 1). The relationship of these models to the 
unit cells, shown in Figs 1 and 2 for the fcc lattice and 
for the hcp lattice shown in Figs 3 and 2, respectively, 
are indicated by thick lines inside the unit cubic or 
hexagonal system. 

We examine now the models established in Figs 
4 and 5 as isolated independent structures subject to 
axial tensile loads of unit intensity. 

A 

Figure 2 The hcp crystal lattice. 

B (h c p) 

The fcc and hcp lattices are systems with the closest 
possible packing of atoms, and since they have the 
same density they allow use of structural elements 
composed of members having the same length, re- 
presenting the equilibrium distance between atoms 
when the system is unloaded. Figs 1 and 2 represent 
the arrangements of the rows of atoms in the crystal 
lattice for the fcc the hcp systems, respectively. 

For a better understanding of the particular charac- 
teristics of both structures and to give a convenient 
picture for analytical purposes, we construct a three- 
dimensional model composed of unit spheres re- 
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Figure 3 The existing model units inside the fcc crystal lattice. 
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Figure 4 Diagonal and transverse projections of the fcc crystal 
lattice viewed along the diagonal plane (ADGF) of Fig. 3 for the fcc 
configuration. 

4. Evaluation of Poisson's ratios 
of typical isolated structures 

We study now the deflections of each particular struc- 
ture corresponding to either lattice. The axial and 
transverse deflections of each beam of the elementary 
framework will be calculated by the classical methods 
of analysis. These deflections will be divided by the 
lengths of each beam to determine the strain. 
Poisson's ratio will be derived by the ratio of the 
overall transverse strain to the respective axial strain 
for each model unit, assuming that the deflection of 
each member is proportional to the transmitted force. 

From the equations of equilibrium it is found that 
the forces in the diagonal and horizontal members of 
the elementary unit of Fig. 4 are given by 

PD = 0.408P, Pc = 0.204P, Pn = - 0.253P (13) 

In this framework all the PD, Pc and PH members are 
six in number for each unit. 

Since all members have the same length, Hooke's 
law is expressed by 6i = PilE' (with i =  D, C, H), 
which 8 is the deflection of the member, P is the force 
in the member and E' is the constant elastic modulus 
of each member, multiplied by its cross-section, which 
is also taken as being the same for all members. 

The contribution of each of the above deflections to 
the overall vertical deflection is found by applying 
Castigliano's theorem. The coefficients thus obtained 
are numerically equal to the forces in the members by 
assuming that the applied external force P is equal to 
unity. 

Then, the vertical deflection is given by 

6v = [6x0.4082 + 6x0.204 z + 6 x ( -  0 .253)2]~  

P 
& = 1.633-- (14) 

E' 

Then, the axial strain is given by 

~ 1.633 P 7 P 
zv - - - 0.66 ~, (15) 

L~ 2.448 E' /~. 

G 

~ I 

(a 

& C.G / - ' o  
, P =0.408 ~i, pD ~ D  r-- p pa =_0.272 ~ PD~ 

, 
, . c  

(a2) (b2) 

~ N 

J 
(bl) K 

N,J 
_~pN'~ 0,354 

/PD PH = -0.354 
I (fcc + hcp) 
P 

where L~ is the vertical length of the element in Fig. 4, 
which is equal to L~ = 2.448. 

Similarly, the horizontal deflection is equal to the 
respective strain, because the length of the member is 
equal to unity. Then, it is valid that 

P 
~H - 0.253--  (16) 

E' 

Finally, the Poisson's ratio of the element of Fig. 4 is 
given by 

gH v = = 0.380 (17) 
Sv 

A similar analysis of the element of Fig. 5a yields 

Po = 0.408P, Pn = - 0.272P (18) 

The deflections of the various elements of this model 
are 

Figure 5 (a) Longitudinal and transverse projections of a hcp crys- 
tal lattice, and (b) the same projections for complementary model 
units in both the fcc and the hcp crystal lattices. 

60 = 0.408 P ,  an = - 0 . 2 7 2  P (19) 
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Thus, the vertical deflection of the model consisting of 
six members with 6o and another three members with 
6n is given by 

P (20) 8~ = l-6 x (0.408) 2 + 3 x ( - 0.272) 2-] t~' 

Because the vertical length L~ of the overall element is 
now equal to L~ = 1.632 (see Fig. 5a2) the vertical 
component of strain, ev, is given by 

6~ 1.223 P P 
- L~ - 1.632 - E' - 0.750 (21) 

Unit element of single rows of atoms 

{a) 

whereas the horizontal component of strain, ~n, is 
given by (Ln = 1.0) 

P 
an - 0.272 ~7 (22) 

Finally Poisson's ratio of the model of Fig. 5a is given 
by 

~n 0.272 
v - - = 0.353 (23) 

~ 0.750 

It is worthwhile noticing that the horizontal strain, eH, 
given in Equation 22 is the same for each element of 
the triangle representing the cross-section in Fig. 5al 
and therefore Mohr's circle for strain must be a point, 
showing that the strain is the same in any direction 
through the cross-section. 

Analysis of the element of Fig. 5b which is common 
to both lattices gives the following results 

PD = 0.354P, PH = - 0.354P (24) 

Moreover, the Po members are eight in number, 
whereas the PH members are four in number then we 
have 

s _e (25) ~ = 1 .06U,  en = - 0 . 3 5 4 E ,  

and, finally, a value for Poisson's ratio is given by 

v = -0 .355  (26) 

Finally, there are, in both systems, straight rows of 
atoms capable of transmitting tensile forces. In the fcc 
system each row represents the intersection of three 
planes of atoms with an identical and staggered 
arrangement, so that they may be thought of as having 
a three-dimensional symmetry with respect to neigh- 
bouring atoms. It is therefore possible to analyse it in 
a member of a plane structure consisting of a rhom- 
boidal arrangement of atoms, as shown in Fig. 6a, 
isolated by selecting two atoms together with their 
closest neighbours in the plane. When the structure is 
loaded the diagonal members must remain unloaded 
with their intercentre distances unchanged, because no 
deformation is accepted for the atoms. However, the 
axial direction of the unit is lengthened because of the 
applied axial load, as in Fig. 6b. 

By assuming a certain deflection in the axial mem- 
ber the lateral deflection can be readily found. A lat- 
eral tension force P = 1 will produce a force of 

- 0.577P in the axial member and therefore the lat- 

> 1  

L' 
L ' > L  

(b) �9 - ' 

Figure 6 The oc tahedra l  p lane  a r r angemen t  of the c lose-packed 
rows for bo th  lattices: (a) un loaded ,  (b) loaded. 

eral deflection ~n is given by 

8H - 0.5775~ (27) 

Therefore, the axial and lateral components of strain 
can be evaluated, because the respective lengths are 
L~ = 1 and LH = 1.732 and they are given by 

~H m 

~v 
L~ 

- 0.5776~ - 0.577~v 

Ln 1.732 

- 0.333~ (28) 

The respective Poisson's ratio is, therefore, equal to 

EH v = = 0.333 (29) 
Ev 

It follows that because v is the ratio of two elastic 
strains it is independent of any law of elasticity which 
is valid for both strains. 

It has been established by this simple framework 
analysis that the various structural models, which can 
be isolated in either of the crystal systems studied, 
have values of Poisson's ratios varying between 0.333 
and 0.380. These values represent the extreme values 
defining the range of variation of Poisson's ratio, as 
the orientation of the crystal inside the polycrystalline 
body changes randomly. 

When the tension force is applied in an arbitrary 
direction in the force-transmission path along some 
axis lying between the extreme axes investigated in the 
previous analysis it is expected that the respective 
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values for Poisson's ratios will lie inside the estab- 
lished interval, because, if the force assumed is re- 
solved into components along the closest model axes, 
the cosines of the angles involved would not differ 
significantly from unity. 

Because for the evaluation of Poisson's ratios we are 
not concerned with absolute values, but with ratios, it 
appears that the foregoing analysis and results will not 
appreciably change when all possible directions of 
loading of the crystal are considered. 

The actual crystal may be thought of as a collection 
of structural models in the lattice, having both regu- 
larity and continuity, therefore all the above analysis 
is valid for the actual crystals of the body, Therefore, 
whenever forces are transmitted through a crystal 
along diagonal paths, the Poisson effect is actually 
caused by surface forces, which, in the case of tension 
represent compressive stresses which are approxim- 
ately equal to one-third of the applied tension stress; 
an exception is that when the force is transmitted 
along straight rows of atoms then these are not dia- 
gonal forces. The lateral contraction occurs because 
there is no external surface force acting upon the 
specimen. Hence there is no force at the diagonals. The 
interatomic bond is still the fundamental cause of the 
Poisson effect, because, if it were not present along the 
diagonal axes, there would be nothing to prevent 
elongation of these axes. 

The use of the individual models for the analysis of 
loading of a polycrystalline body can now be seen to 
be a convenient artifice replacing the truly typical 
behaviour of the entire crystal. Actually, the forces 
could be traced along diagonal paths through the 
three-dimensional crystal until they arrive at a surface, 
where they would have to find a new path along 
different diagonals. The transverse force required for 
equilibrium at the surface would then be applied 
across the entire crystal in order to obtain the trans- 
verse deflection. 

The fact that transverse forces can actually exist 
when the external forces are purely axial has a practi- 
cal significance because for a material with low tensile 
strength in the transverse direction, there is a danger of 
failure by premature longitudinal cracking. 

Furthermore, it is worthwhile indicating that the 
interior state of stress in simple tension is not a simple 
tension, because if the crystal is oriented in such a way 
that the tensile forces must be transmitted by diagonal 
action, it is possible that, at any interior point, the 
state of stress is axial tension combined with radial 
compression. Therefore, if the value of Poisson's ratio 
is assumed to be equal to one-third for computing the 
transverse effects, all shear stresses would be increased 
by the same amount. 

to: (i) an axial, stress 15x~ = 15 cos 0; and (ii) a trans- 
verse stress 15y0 = 15 sin 0. 

Owing to the stress 15x0 we get (i) an axial strain 

15 
Ax0(11 = ~ c o s 0  

and (ii) a transverse strain 

15 
Ayo(11 - E' sin0 

Owing to the stress 15r0 we get (i) a transverse strain 

15 
At0 (2) = ~; sin 0 

and (ii) an axial strain 
! 

Ax0(2) = - ~ s i n 0  

The total strains in the x0 and Y0 directions are given 
respectively by 

15 
Ax0 = Ax0(!) + Axo(2~ = ~ ( c o s 0 -  v 's in0) 

and (30) 

cr 
Ay0 = Ay0(x) + At0(2) = ~ ( s i n 0 -  v'cos0) 

Referring to the x- and y-axis, we get for the strains 

150 
Axn = ~ 7 ( C O S 0  - -  v ' s in0 )cos0  

and (31) 

150 
a y n  - -  E' 

- - -  (sin 0 - v' cos 0) sin 0 

Owing to the large number of crystals and their ran- 
dom orientation we can assume a uniform angular 
distribution over the entire interval (0, rU2). 

The overall strains will be 
~/~ 

Ax = - c o s O -  v' sin O) cos O dO 

0 

(32) 
~/2 

= - s i n O -  v'cosO)sinOdO 

0 

If, on the other hand, a homogeneous and isotropic 
material, with respective parameters E and v, is con- 
sidered, subjected to a uniaxial tension, ~, we get 

15 
Ax = -- 

E 

5. T h e  e f f e c t  o f  orientation 
Consider a body consisting of a large number of crys- 
tals randomly oriented. The crystals are identical, with 
modulus E' and Poisson's ratio v'. Consider also 
a field of uniaxial tension in the x-direction and a crys- 
tal with axes x0, Y0, positioned at an angle 0 in 
relation to the axes x, and y. This crystal is subjected 

and 

cr 
Ay = - v -  (33) 

E 

Ay 
v - Ax (34) 

The overall value of Poisson's ratio, v, is then ex- 
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pressed by 

~/2 

f (sin 0 - v' cos O) sin 0 dO 

o (35) V - -  ~/2 

f (cos 0 - v' sin O) cos 0 dO 

o 

which leads to the expression 

(2 - ~/2) 0.429 
v - - (36) 

(re/2 - v') 1.571 - v' 

Equation 36 is shown in Fig. 7. It can be seen that if 
the Poisson ratio, v', for the individual crystal varies in 
the range (0.333, 0.380), as has been already estab- 
lished there is hardly any change in the Poisson's ratio 
of the polycrystalline body, v, since the v = f(v') curve 
in a range from 0.347-0.360 is much smaller than the 
range (0.333, 0.380) for the individual units. 

All practical structures are made from polycrystal- 
line materials, where the crystals are found in a more 
or less random orientation. If the orientation is truly 
random it has been previously shown that Poisson's 
ratio is governed by the integrated action of all the 
crystals. This value does not greatly vary and may 
fluctuate over a very limited spectrum of values. It is 
therefore reasonable to conclude that a single-crystal 
value expresses, to a good approximation, the respect- 
ive value for the polycrystalline body, and these values 
do not diverge significantly from one material to the 
other; however, a unique value is satisfactory for all 
materials with the same crystal lattice. Furthermore, 
there is a small difference between the fcc and the hcp 
crystals, which represent the majority of the structural 
metals. 

Table I indicates that for any of the actually impor- 
tant crystal-lattice systems the differences between the 

mean values of Poisson's ratio for each system, al- 
though distinct, do not differ significantly 

Even when there is a certain degree of preferred 
orientation, there seems to be no reason to believe that 
the value of Poisson's ratio might appreciably be 
affected, even though this might have a considerable 
effect on the other elastic constants. 

Conclusions 
1. The value of Poisson's ratio has been calculated 

for models representing various paths of force trans- 
mission through crystals. A linear force-deflection re- 
lationship was assumed. The calculated values for fcc 
and hcp  crystals were of the order of one-third, which 
is close to actual measured values for polycrystalline 
materials. 

2. Th e  value of Poisson's ratio, calculated in the 
above manner, does not appear to vary greatly with 
the orientation of the loading. 

3. Whenever the force is transmitted through 
a crystal by diagonal paths, there will be a surface 
stress acting so as to cause transverse strains. Some 
observed phenomena (such as the longitudinal crack- 
ing of brittle compression specimens, or the longitud- 
inal wrinkling of thin tension membranes) may be 
explainable on this basis. 

4. Similar studies should be made for other crystal 
lattices and for common alloys. 
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Figure 7 The variation of Poisson's ratio, v, of a polycrystalline 
body in terms of the respective Poisson's ratio v' for the models 
contained in each system. 
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